Chlorination: a general route toward electron transport in organic semiconductors.
نویسندگان
چکیده
We show that adding chlorine atoms to conjugated cores is a general, effective route toward the design of n-type air-stable organic semiconductors. We find this to be true for acenes, phthalocyanines, and perylene tetracarboxylic diimide (PDI)-based molecules. This general finding opens new avenues in the design and synthesis of organic semiconductors. We compared a series of fluoro- and chloro-functionalized acenes, phthalocyanines, and PDI-based molecules. The acenes synthesized showed high and balanced ambipolar transport in the top-contact organic field effect transistor (OFET) geometry. The electron-withdrawing halogen groups lowered the LUMO and the charge injection barrier for electrons, such that electron and hole transport occurred simultaneously. If the chlorine added does not distort the planarity of the conjugated core, we found that the chloro-functionalized molecules tend to have a slightly smaller HOMO-LUMO gap and a lower LUMO level than the fluoro-containing molecules, both from calculations and cyclic voltammetry measurements in solution. This is most likely due to the fact that Cl contains empty 3d orbitals that can accept pi-electrons from the conjugated core, while F does not have energetically accessible empty orbitals for such delocalization.
منابع مشابه
Field Dependent Charge Carrier Transport for Organic Semiconductors at the Time of Flight Configuration
In this paper, we used the time-of-flight (TOF) of a charge packet, that injected by a voltage pulse to calculate the drift velocity and mobility of holes in organic semiconducting polymers. The technique consists in applying a voltage to the anode and calculating the time delay in the appearance of the injected carriers at the other contact. The method is a simple way to determine the charge t...
متن کاملTrends in molecular design strategies for ambient stable n-channel organic field effect transistors
In recent years, organic semiconducting materials have enabled technological innovation in the field of flexible electronics. Substantial optimization and development of new p-conjugated materials has resulted in the demonstration of several practical devices, particularly in displays and photoreceptors. However, applications of organic semiconductors in bipolar junction devices, e.g. rectifier...
متن کاملTheoretical Characterization of the Air-Stable, High-Mobility Dinaphtho[2,3-<italic>b</italic>:23-<italic>f</italic>]thieno[3,2-<italic>b</italic>]-thiophene Organic Semiconductor
Recently, an optimum mobility of 8.3 cm2/(Vs) has been measured for single-crystal organic field-effect transistors based on the dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]-thiophene (DNTT) molecule. Here, on the basis of quantum chemistry calculations and molecular dynamics simulations, we investigate the microscopic charge transport parameters of the DNTT molecule and crystal. Our findings confirm ...
متن کاملOne-pot synthesis towards sulfur-based organic semiconductors ~ A short and simple synthetic route for thiophene-fused aromatic compounds ~
Thiophene-fused polycyclic aromatic hydrocarbons (PAHs) are known to be useful as organic semiconductors due to their high charge transport properties. Scientists at Nagoya University have developed a short route to form various thiophene-fused PAHs by simply heating mono-functionalized PAHs with sulfur. This new method is expected to contribute towards the efficient development of novel thioph...
متن کاملInterpretation of electron diffusion coefficient in organic and inorganic semiconductors with broad distributions of states.
The carrier transport properties in nanocrystalline semiconductors and organic materials play a key role for modern organic/inorganic devices such as dye-sensitized (DSC) and organic solar cells, organic and hybrid light-emitting diodes (OLEDs), organic field-effect transistors, and electrochemical sensors and displays. Carrier transport in these materials usually occurs by transitions in a bro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 131 10 شماره
صفحات -
تاریخ انتشار 2009